
Predict Steering Angles in Self-Driving Cars

Neha Yadav
University of Massachusetts Amherst

Amherst MA
nyadav@cs.umass.edu

Rishi Mody
University of Massachusetts Amherst

Amherst MA
rmody@cs.umass.edu

Abstract

The advance in technology over recent years has led ma-

jor automobile manufactures to invest in making their cars

technologically more furnished. A major push has been in

the area of making cars autonomous and self-driving. Au-

tonomous cars would not only make driving simpler but also

safer.

Last year, Udacity released a dataset which among other

data, contains a set of images annotated with the steering

angle applied by a human during driving. The Udacity chal-

lenge

1
is aimed at predicting steering angle based on only

the provided images of the road captured using cameras

placed behind the car’s windshield.

We design and explore multiple models to perform high

quality prediction of steering angles based on these images

using different deep learning techniques including deep

Convolutional Neural Networks and hybrid models built on

top of pre-trained networks like VGG16 on imagenet via

Transfer Learning [11].

1. Introduction
The push for self-driving vehicles has increased dramati-

cally over the last few years after the success of the DARPA
Grand Challenge 2. An autonomous vehicle works seam-
lessly when multiple components come together and work
in synergy. The most important parts are the various sensors
and the AI software powering the vehicle. One of the most
critical functions of the AI is to predict the steering angle of
the vehicle for the stretch of road lying immediately in front
of it and accordingly even steer the car. Increase in compu-
tational capabilities over the years allows us to train deep
neural networks to become the ”brain” of these cars which
then understands the surroundings of the car and makes nav-
igation decisions in real time.

1https://medium.com/udacity/challenge-2-using-deep-learning-to-
predict-steering-angles-f42004a36ff3

2https://en.wikipedia.org/wiki/DARPAGrandChallenge

Udacity held a series of challenges last year to create an
open source self-driving car. They released a data set of
images taken while a car was being manually driven, anno-
tated with the corresponding steering angle applied by the
human driver. The goal of one of the challenges was to find
a model that, given an image taken while driving, will min-
imize the RMSE (root mean square error) between what the
model predicts and the actual steering angle produced by a
human driver.

In this project, we explore a variety of methods including
deep convolutional neural networks, models based on pre-
trained networks like VGG16, etc. to predict steering angle
values. Predicting the steering angle is one of the most im-
portant parts of creating a self-driving car. This task would
allow us to explore the full power of neural networks, using
only steering angle as the training signal, deep neural net-
works can automatically extract features from the images to
help understand the position of the car with respect to the
road to make the prediction.

2. Problem Statement
A self-driving car is loaded with cameras which capture

images of the road in front of it. Using these images in real-
time the model should be able to analyze the direction of
the road and predict how much the steering wheel must be
turned to follow it. For this project, we have a data set of
pre-captured images for which we will predict the angle.

3. Related Work
Research on autonomous vehicle navigation was pio-

neered by Pomerleau(1989) [6] when he built the Au-
tonomous Land Vehicle in a Neural Network. The model
comprised of a fully-connected network which would be
considered a very basic version if compared to the large
models in use today.Though the network could be applied
to only a few simple scenarios with minimal obstacles this
paper laid the foundation of end-to-end autonomous navi-
gation.

Recently, an NVIDIA team consisting of Bojarski, Del
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Testa et al [5]. carried out a study to design an end-to-end
learning of self-driving cars. They trained a convolutional
neural network(CNN) to map raw pixels from a single front
facing camera directly to steering commands. They found
that this method was surprisingly accurate, without much
training from humans the model managed to learn to drive
in traffic on local roads some of which had lane markings
while some did not as well as on highways. Overall this
framework was successful in relatively simple real-world
scenarios, such as highway lane-following and driving in
flat, obstacle-free courses.

The use of complicated neural network structures has in-
creased in the process of classification of videos and object
detection. These advancements are getting translated and
transferred to challenges of autonomous driving.

Comma.ai [8] has proposed to learn a driving simula-
tor that uses Generative Adversarial Networks (GANs) [3]
and a Variational Auto-encoder (VAE) [2]. Their approach
is able to keep predicting realistic looking video for sev-
eral frames based on previous frames despite the transi-
tion model being optimized without a cost function in the
pixel space. Moreover, deep reinforcement learning (RL)
has also been applied to autonomous driving [7], [9]. RL
has not been successful for automotive applications until
some recent work, which shows the deep learning algo-
rithm’s ability to learn good representations of the envi-
ronment. Inspired by the success of deep reinforcement
learning in learning of games, [7] has proposed a frame-
work for autonomous driving using deep RL it is an end-to-
end Deep Reinforcement learning pipeline for autonomous
driving which integrates RNNs to account for POMDP sce-
narios. The framework was tested for lane keep assist algo-
rithm.

4. Dataset

The dataset has been provided by Udacity as a part of its
Self-Driving Car challenge. They have generated images
using NVIDIA’s DAVE-2 System which uses 3 cameras
placed behind the windshield of the car. A time stamped
video is captured along with the steering angle applied by
the human driver. The video is captured in varying condi-
tions of light and traffic.

The data is given in a ROSbag format for which we used
a reader developed by rwightman [12]. The reader loads the
ROS bag, extract images as well as angles from the ROS
bag. CH2 002 bag are used for training our model and
CH 001 for evaluating its performance. Training data set
contains 101397 frames and corresponding labels including
steering angle, torque and speed.And there is also a test set
which contains 5615 frames from the center camera. The
original resolution of the image is 640x480.

Training images come from 5 different driving videos:

Figure 1: Sample images from the data set

• 221 seconds, direct sunlight, many lighting changes.
Good turns in beginning, discontinuous shoulder lines,
ends in lane merge, divided highway

• discontinuous shoulder lines, ends in lane merge, di-
vided highway 791 seconds, two lane road, shadows
are prevalent, traffic signal (green), very tight turns
where center camera cant see much of the road, di-
rect sunlight, fast elevation changes leading to steep
gains/losses over summit. Turns into divided highway
around 350s, quickly returns to 2 lanes.

• 99 seconds, divided highway segment of return trip
over the summit

• 212 seconds, guardrail and two lane road, shadows in
beginning may make training difficult, mostly normal-
izes towards the end

• 371 seconds, divided multi lane highway with a fair
amount of traffic

4.1. Data Augmentation Methods
A typical convolutional neural network can have up to

a million parameters, and tuning these parameters requires
millions of training instances of uncorrelated data, which
may not always be possible and in some cases cost pro-
hibitive. Due to limited data, deep neural networks have
tendency to over fit the data. To avoid over-fitting, aug-
mentation is one of the technique that is used widely. For
example, for a more generalized dataset we will require the
car to be driven under different weather, lighting, traffic and
road conditions etc.

As we would be generating thousands of new instances
of the image in real time, it is not practical to store these
images on to the disk. Therefore we are utilizing keras gen-
erators to read data from the file, augment on the fly and use
it to train the model. We would be generating augmented
images using the following data augmentation techniques.

4.1.1 Horizontal and Vertical Shifts

In order to simulate the effect of car being at different posi-
tions on the road, we shifted the camera images horizontally
and added an offset corresponding to the shift to the steering
angle.

Shifting the image up/down should cause the model to
believe it is on the upward/downward slope. Therefore,
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camera images are shifted vertically by a random number
to simulate the effect of driving up or down the slope.

Figure 2: Original and horizontal shifted images

4.1.2 Brightness Augmentation

The motive behind brightness augmentation is to simulate
the effect of different light conditions mainly day and night.
Camera images with different brightness are generated by
first converting images to HSV, scaling up or down the V
channel and converting back to the RGB channel.

(a) Original Image (b) Brightened Image

Figure 3: Original and brightened images

4.1.3 Horizontally Flip images

As we expect that car to be able to steer itself regardless
of its position on he road, we performed horizontal flip on
images with the corresponding inversion of steering angle.
This neutralized the steering bias in the training data as a
majority of the images were of the car turning to the right.

(a) Steering Angle: -0.1256 (b) Steering Angle: 0.1256

Figure 4: Original and horizontally flipped images

4.1.4 Random Darken

As some parts of track could be much darker compared to
other parts due to shadow or some other reason, we dark-
ened a proportion of our images by multiplying all RGB
color channels by a scalar randomly picked from a range.
Figure 5.

Figure 5: Original and darkened images

4.1.5 Shadow augmentation

Since our car should be able to recognize patches of track
that are covered by a shadow, we added shadow augmenta-
tion where random shadows are cast across the image. To
achieve this task, for a given camera image we chose ran-
dom points and shaded all points on one side (chosen ran-
domly) of the image.

Figure 6: Original and shadowed images

4.2. Prepossessing
Our input image is shaped 160x320x3. Using lambda

layer in keras it is cropped vertically to 88x320x3. Fur-
ther the intensities in image are normalized between -.5 and
.5 utilizing the lambda layer functionality in keras. Then
images is then re-sized to 66x200 using keras image.resize
function.

5. Methods
We developed two types of model structures. One is in-

spired from the architecture used in NVIDIA’s end-to-end
learning model [5] for self-driving cars while the other is
a hybrid model whose bottom part is based on pre-trained
network VGG16 trained on imagenet and stack of fully con-
nected layers on top.

5.1. Deep ConvNet Model
This model of ours is inspired from NVIDIA’s [5] CNN

architecture from End to End learning from self driving
cars.

Our input image as 160x320x3. Using keras lambda
layer it is cropped vertically to 80x320 and then re-sized
to 66x200.

The model consists of 3 5x5 convolutional layers with
stride of 2x2 and network depth of 24,36 and 48 respec-
tively. Then it is followed by 2 3x3 convolutional layers
with a 1x1 stride and depth of 64. Each convolution layer
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is followed by Batch Normalization. Output of the last con-
volutional layer is flattened before entering fully connected
phase and series of fully connected layers are used.Each
stack of fully connected layers consists of 1152, 200, 50 and
10, 1 respectively. Last layer predicts the steering angle.
The activation function used across all layers, bar the last
one, is ReLU. Evaluation metrics for this model is RMSE
with adam as optimizer for the loss function. Overall pa-
rameters for this model are 1,229,193.

Batch Normalization [4] after each convolutional layer
allowed us to use much higher learning rates and helps make
our model more independent from the initialization parame-
ters. It also acted as a regularizer, in some cases eliminating
the need for Dropout [10].

Figure 7: NVIDIA architecture

5.2. Hybrid Model
One common barrier for using deep learning to solve

problems is the amount of data needed to train a model.
The requirement of large data arises because of the large
number of parameters in the model that machines have to
learn. However models trained on one task capture rela-
tions in the data type and can easily be reused for different

problems in the same domain. This technique is referred to
as Transfer Learning. With transfer learning, we can take
a pre-trained model, which was trained on a large readily
available data set (trained for a completely different task,
with the same input but different output). Then try to find
layers which output reusable features. We use the output of
that layer as input features to train a much smaller network
that requires a smaller number of parameters. This smaller
network only needs to learn the relations for your specific
problem having already learned about patterns in the data
from the pre-trained model.

Using transfer learning approach, we have built a Hy-
brid model. The bottom part of the model is based on
VGG16. We have used Keras implementation of VGG16
model and it was trained on ImageNet. The output of
the VGG16 is connected to stack of fully connected lay-
ers namely 512,256,64,10 and 1 different units respectively.
The output is a single node with tanh activation function.

The architecture of this model can be seen in Figure 8
with overall parameters being 15,129,149. A block consists
of dense layer,batch normalization,dropout. Dropout layers
after batch normalization should help model prevent over-
fitting.

Each dense layer has relu as activation function except
the last layer where we have used tanh. The idead begind
using tanh is that it fits well with the angle distribution as
well as generate values that can be positive or negative. The
model output is a list of angles between -1 and 1.

Figure 8: Hybrid Model architecture (based on transfer
learning technique)

We performed mutiple experiments to choose the num-
ber of stacks of fully connected layers and their dimensions
for hybrid model. Combinations other than shown in fig 8
either were too slow to train or yielded poor results. An-
other major challenge to train this network was to fit mem-
ory in data. As we were also generating the augmented im-
ages on fly it was nearly impractical to load all images in
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memory at once. Therefore, we used keras generator func-
tionality where we generated 64 images per batch and total
20480 images per epoc.

5.3. Loss Function and Optimization
Because of the nature of the problem, our loss is com-

puted as root mean squared error(RMSE). RMSE is cal-
culated as the square root of the mean of the squared dif-
ferences between actual outcomes and predictions. Since
the errors are squared before they are averaged, the RMSE
gives a relatively high weight to large errors. This means
the RMSE is more useful when large errors are particularly
undesirable. The benefit of using using RMSE over MSE is
that it penalizes larger errors with worse scores.

MSE = 1/n
X

(yi � ŷi)
2 (1)

RMSE =
q
1/n

X
(yi � ŷi)2 (2)

To optimize the loss, for our Deep Convnet Model
we have used ’adam’ as optimizer with learning rate of
0.001. Adam combines the best properties of the Ada-
Grad and RMSProp algorithms to provide an optimiza-
tion algorithm that can handle sparse gradients on noisy
problems.Empirical results demonstrate that Adam works
well in practice and compares favorably to other adaptive
learning-method algorithms. The other default values of the
Keras Adam optimizer showed good results during train-
ing (learning rate = 0.001, �1 = 0.9, �2 = 0.999,
✏ = 1e� 10, and decay=learning rate/batch size).

While for our Hybrid Model, we needed an optimizer
with faster convergence rate. To achieve this we performed
multiple experiments using different optimizers and found
that ’nadam’ works best for our model. Nadam incorporates
Nesterov Momentum with adam as we needed an optimizer
with faster convergence rate. Nesterov Momentum would
speed up the convergence results. We have used keras im-
plementation of Nadam with learningrate = 1e�6, �1 =
0.9, �2 = 0.999,✏ = 1e� 10 and schedule decay = 0.004

6. Experiments
We processed the .csv file that contains the image file

names and their corresponding steering angle and then ran-
domized the data and split into 80/20 ratio. 20% of the data
is used for validation purpose. All our models are trained
and evaluated in GPU.

In first phase of our experiments all our models were
trained on training set without using any data augmentation.
Though, we performed image pre-processing like cropping
the top part of image to remove sky from camera image.
This was done considering the fact that sky does not help
much in our task.

Further to save time and fine tune number of epochs we
used early stopping technique. Early stopping is a type of
regularization to curb over-fitting of the training data and
requires that you monitor the performance of the model on
training and a held validation data sets, each epoch. It sim-
ply stops training once the validation loss hasn’t decreased
for a pre decided number of epochs (the parameter is
called ’patience’). Keras supports early stopping through an
EarlyStopping callback class. We used (monitor=‘val loss’,
min delta=0.0001,patience=10 ). ‘min delta’ is a threshold
to whether quantify a loss at some epoch as improvement or
not. ‘patience’ argument represents the number of epochs
before stopping once your loss starts to increase (stops im-
proving).

As a fault tolerance mechanism for long running pro-
cess like training a deep neural network with millions of
parameters, we used application check-pointing. It is an ap-
proach where a snapshot of the state of the system is taken
in case of system failure. If there is a problem, not all is
lost. The checkpoint only includes the model weights. It
assumes you know the network structure which could be
serialized to file in JSON or YAML format. These weights
were used to make predictions as is, or used as the basis
for ongoing training. Keras support checkpoint capability
by The ModelCheckpoint callback. This ensured that our
best model is saved for the run during training.

Now since memory is an limited resource and it is not
practical to load all these images at once in memory. So
we utilized Keras generator to sample images such that all
angles have the similar probability no matter how they are
represented in the data set. Keras generator is set up such
that in the initial phases of learning, the model drops data
with lower steering angles with higher probability. This re-
moves any potential for bias towards driving at zero angle.

For optimizing the loss for our model, we used adam as
optimizer for Deep Conv Net model, while nadam was the
optimizer for Hybrid model. We began with using the de-
fault parameters in Keras for these optimizer, after measur-
ing the loss after the first epoch we decreased the learning
rate by a factor of 10 and measure the loss again. Once we
had a low initial loss, we began training our model. The fi-
nal parameters used in our models are mentioned in section
5.3 under loss and optimization.

Since our training data is limited and training deep neu-
ral network to learn and generalize better in real world sce-
nario, huge amount of data is required. Our car should be
able to drive in different conditions. Hence we switched our
approach and decided to use data augmentation techniques.
Using these data augmentation methods an infinite number
of new images can be generated. We performed different
augmentation on the training images as described in section
4.

In second phase of our experiments, we used data aug-
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mentation heavily (examples in section 4.1). Various exper-
iments were performed to optimize the number of images to
be generated by generator in one batch and how many im-
ages to be generated in total for one epoch. We tried using
batch size of 256,512, 128, 64, 32 and found 64 to be most
efficient. Total 20480 images were used and we used 50
epochs with early stopping mechanism. After each epoch
our models were evaluated against the validation data that
we had split earlier.

Figure 9: Experimental model architecture

6.1. Experimental Model
In both our models we have used batch normaliza-

tion layer after convolutional layers. While in our hybrid
model,we have used Dropout of 0.5 after batch normaliza-
tion. Since we were interested to know effect of max pool-
ing layers for spatial reduction (and memory friendliness).
We tried another experimental model whose architecture
could be seen in Fig 9. This model consists of 5 convolu-
tional layers with Max pooling between them followed by a
couple of dense layers and a linear activation to output con-
tinuous steering angles. We use the exponential linear unit
(ELU) [1] activation throughout with adam as an optimizer.

ELU acts like a ReLU unit if x is positive, but for negative
values it is a function bounded by a fixed value -1, for =1.
This behavior helps to push the mean activation of neurons
closer to zero which is beneficial for learning and it helps to
learn representations that are more robust to noise. Further
ELU units actually seem to learn faster than other units and
they are able to learn models which are at least as good as
ReLU-like networks. After we realized augmentation was
helpful, we trained our experimental model only on aug-
mented images. This model did not perform well compared
to our two main models. The RMSE for this model was
0.2031 on test set.

7. Results

NVIDIA, after conducting its experiments had set a
benchmark of 0.20 RMSE for their architecture. Bench-
mark on this data set is set at 0.2067 which can be obtained
if all the predicted angles are set to zero. All our models ran
on the same data sets (training, validation, and test). The
results for each model are listed in table 1 and 2.

Table 1: RMSE for models on Udacity data set

Training Set Validation Set Test Set
Hybrid 0.0778 0.0736 0.0708

Deep Convnet 0.0945 0.1070 0.1043
NVIDIA 0.0750 0.0995 0.0986
Predict 0 0.2716 0.2130 0.2076

Table 2: RMSE for models on Udacity data set(no augmen-
tation)

Training Set Validation Set Test Set
Hybrid 0.1138 0.0997 0.0951

Deep Convnet 0.2072 0.1988 0.1907

It is evident from table 1 and 2, that image augmentation
significantly improved the performance of our model and
helped them generalize better. Fig 9 shows sample images
along with true and predicted steering angle.

Results from our hybrid model using pre-trained VGG16
and stack of fully connected layers has RMSE 0.0708 for
the test set. RMSE for our deep convnet model inspired
from NVIDIA architecture was 0.1043. Retrospectively,
had we participated in the Udacity challenge with this
model, we would have been placed amongst the top 4 teams.
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(a) Predicted: 0.00143, True:
0.00174

(b) Predicted: 0.00757, True:
0.00776

Figure 10: Comparison between true and predicted steering
angle

8. Conclusion and Future Work
Predicting the steering angle for self driving cars is a

very interesting problem. One of the major challenge to
train a deep neural network to perform this task is the
amount of training data. Our ultimate aim is that our car
should be able to drive under different weather, lighting,
traffic and road conditions. Apart from designing an effi-
cient network, the model requires huge amount of data and
hours of training. Based on limited number resources and
training data our model did fairly well. Among all mod-
els hybrid model gave the best results. Image augmentation
and generating images on the fly helped significantly by pre-
venting model to over fit and helping the model generalize
better.

We did not consider speed, torque and throttle for this
task. Incorporating these metrics can help model improve
performance and their values can also be predicted mov-
ing the model closer to a fully functional self-driving car
model.One can also experiment with deep reinforcement
learning to solve this problem. Because of the nature of the
input, which is a series on consequence images about the
same environment evolving by time. Using recurrent neural
network or RNN with memory unit can be useful. Generate
adversarial models, GANs, could be used to augment data
set by generating different conditions on track while driv-
ing. For example GAN could be used to generate images
on track during adverse weather conditions. To simulate
driving in real world with minimal error, there is substan-
tial research that still needs to be done on the subject before
models like these can be deployed widely to transport the
public.
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