
An Iterative and Feedback-based Data Cleaning
approach for enhancing Machine Learning Models

Rishi Mody, Satya Narayan Shukla and Utkarsh Srivastava
College of Information and Computer Sciences

University of Massachesetts Amherst
Amherst, MA 01003-9264

Abstract—Processing and cleaning dirty datasets has always
been a major bottleneck for any data analytics process. For a
general Machine Learning prediction task, correctness in data
implies higher final model accuracy. Generally cleaning is done
iteratively - clean some data, analyze and clean some more
data based on the analysis. Unfortunately, for statistical models,
iterative cleaning and re-training can lead to misleading results
even for a simple model [explained using Simpsons Paradox]. The
paper explores an iterative data cleaning process in the context of
training Machine Learning models that only enhances modeling
accuracy at every step of the cleaning process by updating
model parameters. The paper further provides a novel way of
integrating a feedback-mechanism from the Cleaner module and
the updated ML model for choosing subsequent dirty samples
for clean-up. The experimentation is done on the raw UCI Adult
dataset with additional inclusions of corrupted data. Evaluation
of results on this dataset conforms with the expected nature
described in the paper.

Keywords—Active Clean, Data Cleaning, Machine Learning,
Convex Loss Functions, Prediction Task, Cleaner, Sampler, Con-
ditional Functional Dependency, Integrity Constraints, Dirtiness
Confidence Evaluator.

I. INTRODUCTION

In recent times, Machine Learning is being increasingly
used in diverse world domains to solve problems that can be
very complex for a human-being. Availability of large amounts
of documented data has only facilitated research in this area.
Having a well structured data-representation (space) is neces-
sary but not sufficient to extract as much information from data
as possible for a general Machine Learning task. This requires
making sure that the data is “correct” which directly co-relates
with the field of “Data Cleaning” in Database theory. This
provides a great opportunity to couple Data Cleaning practices
and Machine Learning approaches together efficiently, where
one can benefit from the other. Hence, in this paper we aim
to provide a novel implementation and an extension of prior
work, in presenting an interactive and feedback-based data
cleaning approach for improving accuracy and correctness
of Machine Learning prediction models. This paper focuses
on a certain kind of Machine Learning model whose loss
function converges with iteration count. Using such models
can help us in giving more structure to this task - where
instead of re-training the model each time upon cleaning a
set of sample records, we can update the model parameters by
making sure that with each parameter update step, the model
accuracy only increases. Further, by analyzing the degree of
improvement gained in accuracy for a given iteration, we can
get an idea on the kind of data we should sample from the

dirty database in the next iteration to clean and update in order
to get a better prediction model. The data cleaning approach
used in the paper can be formalized using traditional database
practices like Conditional Functional Dependencies, Integrity
Constraints etc. by evaluating the property of the given dataset
being worked upon. Since a major chunk of our project work
includes validating the approach taken by ‘Active Clean’ [1]
and extending it using novel implementation approaches, the
implementation has been coded up from scratch.

Fig. 1: (a) Systematic corruption in one variable can lead to
a shifted model. The dirty examples are labeled 1-5 and the
cleaned examples are labeled 1-5. (b) Mixed dirty and clean
data results in a less accurate model than no cleaning.

With the requirement of having clean and correct data
for better Machine Learning model creation, we can argue
why simple iterative cleaning and model re-training will not
necessarily be a good approach. Firstly, the presence of very
high-dimensions in data is a very strong factor affecting this
analysis. Further, observing trends of the Simpsons Paradox
on the model training process provides a clear picture of the
weakness of this approach - if we assume training a Linear
Regression model with a given dirty dataset [Fig. 1a] and
the data cleaning process cleans only a few data points [Fig.
1b], then the intermediate result reveals an even worse model
than [Fig. 1a] which is no-where close to the “True” scenario
[Fig. 1a]. Given the vast scope of ML tasks in application
and the desired high accuracy levels of such methods, we
need to tackle the above mentioned challenges by specifically
focusing on analyzing and maintaining the well-structuredness
and correctness of data - which can be hard. Further, this
area of research work on the intersection of Database Theory
and Machine Learning for Data Cleaning is relatively newer
in its initiation. As a solution to the mentioned problem, we
can formalize a method to explore an iterative data cleaning
process in the context of training machine learning models that
only enhances modeling accuracy at every step of the cleaning
process without re-training along with providing a feedback to
sample dirty data for cleaning that affects positive prediction

accuracy more (as described above). Further, in the presence of
resource or time limitations, this iterative approach can scale
well in still providing a better trained model along increasing
timeline steps.

The structure of this paper details information about exist-
ing research work done in similar areas and broad Literature
Survey in Section II. Then the paper proceeds to discuss
and compare the system architecture of ActiveClean and the
proposed extension in Section III. Section IV describes the
Dataset chosen for evaluation along with all the Database
technologies used in the Cleaner module in Section V. Section
VI presents a detailed analysis of the experimental setup and
produced results. The paper concluded with Section VII along
with a discussion on some scope of future work in Section
VIII.

II. LITERATURE REVIEW

Data Cleaning is a useful and necessary step to remove
errors and inconsistencies from a database in order to ensure
correctness in data [2]. Since data can be aggregated from
multiple sources and could get very large in size, an efficient
data cleaning process is desired. Since manual data cleaning
might be burdensome, innovative automated techniques need
to be formulated that satisfy generalizability as well. The data
cleaning component can be applied to both the schema-level
and data instance-level. Conventional techniques suggested by
[2] take into account data analytics using profiling of actual
data instances to determine a better schema, standardization of
data entries (in terms of format), writing user-defined functions
in SQL and determining a similarity threshold for matching
instances, among other techniques. Though, a lot of them have
limitations in the form of domain-specific application, func-
tion re-implementation and sometimes, manual intervention. It
further provides examples of real-world tools being applied
in practice - textitMigration Architect, Integrity, DataCleanser
etc.

With the advent of strong Machine Learning techniques
in recent years, integration of ML based approaches with
Database technology has not been thoroughly explored. [3]
tries to take this approach one step further by applying fuzzy
inference learning techniques from the area of natural language
processing in specifically doing duplicate data identification.
This not only helps in minimizing coverage of hard-coded
rules, but also paves way for making the process take ad-
vantage of its own data representation (with very little user
intervention) and make the machinery flexible. But it still
remained weak due to relying on domain-specific knowledge.

Sample and Clean [4] talks about a framework for fast and
accurate query processing on dirty data, where data cleaning
is applied to a small subset of data and the results of the
cleaning process are further used to lessen the impact of
dirty data on aggregate query answers. This framework can
produce significant improvements in accuracy compared to
query processing without data cleaning and speed compared to
data cleaning without sampling. Sampling has also been used
to find duplicates in relation [14]. Similarly, the problem of
query-oriented data cleaning has been explored in [15], where
they clean data relevant to the given query only.

There has been research on data repairing techniques
[5] using machine learning (ML) methods for cleaning dirty
databases by modifying the erroneous value. It addresses the
scalability and accuracy of the replacement value by using
statistical ML techniques to predict better updates for repairing
dirty databases. This method is primarily based on maximizing
the likelihood of the data to be replaced given the underlying
distribution of data - which is achieved by training a model
to evaluate the likelihood of the proposed replacement. This
method outperforms other existing methods on large databases
with any type of data (i.e. string, numeric, categorical, ordinal)
or any type of error (missing, incomplete or inconsistent
values). This method has several advantages over previous
methods: the accuracy and the scalability is guaranteed; the
cost of repair is bounded. Machine Learning can also be used
to extrapolate the rules from a small set of data cleaned by
human [12], [16]. This can be combined with active learning
[17] to learn an accurate model with fewest possible number
of examples. While, our project is similar to these approaches,
it addresses a very different problem of data cleaning before
user-defined modeling.

A lot of research has been focused on the use of preliminary
analysis on dirty data as a guide to help identify potential
errors and design repairs [6], [7], [8]. But in case of statistical
models, iteratively cleaning and re-training on partially cleaned
set can lead to totally unexpected and misleading results.
This is a typical example of Simpsons paradox where a trend
appears in different groups of data but could disappear or
reverse in behavior when these groups are seen as a whole [9].
The challenges with Simpsons paradox still prevail because
recent SQL data cleaning techniques like Sample-and-Clean
[4] and Progressive Data Cleaning [10], [11], [12] actually
focus on cleaning subsets of data to avoid expensive costs.
Such approaches need to be re-evaluated in data cleaning for
statistical modeling, and this paper explores the extensions of
such approaches for statistical modeling by providing guaran-
tees of convergence for convex loss models.

III. SYSTEM ARCHITECTURE

The research work being done in ActiveClean [1] has been
a strong step towards coupling Data Cleaning with Machine
Learning models. As described in previous sections of the
paper, the need for working with “correct” training data for ML
models is highly desirable. It focuses effort on cleaning data for
statistical models which can be represented as a minimization
of convex loss functions like logistic regression (LR) and
support vector machines (SVM). In our current work, we have
taken inspiration from the framework developed as a part of
ActiveClean machinery. We have taken inspiration from the
design of the basic pipeline of ActiveClean and combined it
with our own modifications to propose extensions. Since this
work tries to reproduce and compare the solution provided by
ActiveClean and our extensions to this present framework, it
would be nice to give a brief overview of the main ActiveClean
modules before we proceed to highlight the similarities and
differences between the existing framework and our proposed
model.

(a) ActiveClean Model

(b) Our Model

Fig. 2: Comparison between ActiveClean and Our Model

A. ActiveClean

The system architecture of ActiveClean can be seen in
Figure 2a. It iteratively cleans dirty data for statistical modeling
but does not re-train the entire model. Data tuples are cleaned
in batches and then fed back into the model to update the
model parameters. A further optimisation in ActiveClean tries
to reach convergence faster by using a separate Machine
Learning estimator as an optimisation step to also sample clean
data with certain confidence from the dirty dataset, in each
subsequent iteration.

1) Initialization: Initially, for an assumed dirty dataset R,
let Rdirty = R and Rclean = ∅. The system first trains a model
on the dirty data to find initial model parameter θ which needs
to be improved iteratively till convergence. Stochastic Gradient
Descent (SGD) converges for any arbitrary initialization [13],
so θ need not be accurate.

2) Sampler: The Sampler selects a fixed batch of data
tuples (S) from Rdirty randomly which are inspected to be
dirty. These are then sent to the Cleaner module.

3) Cleaner: The Cleaner is an independent module which
inspects a data tuple for being dirty and cleans it using
technology described in Section V. Identification of a tuple
being dirty and cleaning it are 2 separate sub-steps. In a
general framework, this can be manual or automated. Further,
ActiveClean assumes that no error exists that simultaneously
affects multiple tuples - including data duplicacy issues.

4) Updater - Model Parameter: The main focus here is to
model data cleaning problem as a stochastic gradient descent
(SGD) step [13]. SGD is an iterative optimization procedure
that tries to minimize an objective function by taking steps pro-
portional to the negative of the gradient (or of the approximate
gradient) of the function at the current point. In the current
instance, parameter θ is updated iteratively (in the direction of
θ corresponding to total clean data) by updating gradient with
respect to current clean data. This helps in fitting a better model
by reassigning weights of the parameter constituents instead of
entire re-training - close to what a total clean dataset parameter

would behave like. The definition of “better” is defined to be
the one having higher training accuracy.

The current implementation trains and updates models
based on Logistic Regression. For such convex loss models,
SGD converges to a minimum.

Loss Function : Let xi is a feature vector and yi is a label,
the loss function of Logistic Regression is defined as:

L(xi, yi, θ) =
1

ln2
(ln(1 + e−y.f(x)))

θ = argminθ

N∑
i=1

L(xi, yi, θ) + r(θ)

θ : {W, b}

where r(θ) is the regularizer term that is added to the loss
function to penalize overly large weights.
The gradient with respect to θ i.e. W and b is computed as
follows:

∂L(xi, yi, θ)
∂W

=
−y.x.e−y.f(x)

1 + e−y.f(x)
+ 2W

∂L(xi, yi, θ)
∂b

=
−y.e−y.f(x)

1 + e−y.f(x)
+ 2b

Model Update : Our aim is to obtain a set of model
parameters which minimizes the loss function. This becomes
an optimization problem to solve for θ minimizing the convex
loss. The model parameters are updated iteratively by taking a
sequence of steps in opposite direction of the gradient. At the
optimal point, the magnitude of gradient will become zero.
The update equation at the (t + 1)th step can be written as
(given γ learning rate):

θ(t+1) ← θt − γ · ∇L(θt)

Technically, this gradient depends on all of the cleaned data,
but here we try to approximate it with a batch of cleaned
data iteratively. This is done such that if we need to stop at

any iteration, we always have the most accurate model based
on training accuracy metric. The true gradient g∗(θ) can be
expressed as:

g∗(θ) = ∇L(θ) = 1

N

N∑
i=1

∇L(xi, yi, θ)

We approximate this gradient with constituents from both
already cleaned and sampled data cleaned in current iteration,
as follows:

g(θ) =
|Rclean|
|R|

· gc(θ) +
|Rdirty|
|R|

· gs(θ)

gc(θ) is the gradient calculated on already cleaned data and
can be expressed as:

gc(θ) =
1

|Rclean|
∑

i∈Rclean

∇L(xi, yi, θ)

gs(θ) is the gradient estimated on newly cleaned data and can
be expressed as:

gs(θ) =
1

|S|
∑
i∈S
∇L(xi, yi, θ)

where S is the sample of data taken from dirty set and cleaned
with cleaner C(·). Then, at each iteration:

θ(t+1) ← θt − γ · g(θt)

5) Updater - Data Tabulation: The cleaned sample is
added to Rclean and its original entry is removed from Rdirty.
Finally, the system will terminate if all the data is cleaned or
training error converges.

6) Optimization Modules : Detector & Estimator: These 2
modules, in sync, act as optimizers in the existing machinery
that help in faster convergence to a completely clean model.
They help in identifying and estimating the effect of cleaning
a given set of tuples on the current model. However, it is partly
rule-based and partly Machine Learning-based. The necessary
information is gathered from the output of the Cleaner module
using which each tuple in the sample is classified with a label
of being ‘dirty’ v/s being ‘clean’ and added to the current
Estimator model for entire re-training.

This updated trained model is applied in the next iteration
of sampling to the entire updated Rdirty to predict and find
any tuples that belong to the ‘clean’ label and consequently,
should ideally be pushed to Rclean. Using this information,
even before sampling a new batch, a part of Rdirty is directly
added to Rclean and the normal sampling continues. This
prediction estimator model is re-trained using label information
from each new sample with increasing iteration. Since, in each
iteration, atleast S tuples are extracted from Rdirty at the end
of the Sampler module, we will reach convergence faster in
terms of total no. of data elements in Rdirty to inspect. But,
as is true for any ML system, this suffers from having False
Positives - i.e. dirty tuples in reality being labeled wrongly as
clean. This introduces a trade-off between accuracy v/s speed.

B. Our Model - Similarities and Differences

Since the scope of this work is not limited to solely
reproducing and validating the claims made by the work done
in ActiveClean [1], we propose a modification and further
extension to the existing framework of ActiveClean. It cherry
picks the best part about the model machinery described in the
existing work and couples it with separate modules that deal
with limitations of ActiveClean to:

(a) handle the same erroneous structure across multiple
tuples, and

(b) improve the sampling algorithm by using a combination
of domain-dependent and domain-independent heuristic which
still converges faster than the base algorithm, but does not
provide scope for any false positives (i.e. to replace the ML-
based Estimator-Detector module).

The complete architecture of our extended model is de-
scribed in Figure 2b.

Similarities to ActiveClean : The basic pipeline for the
framework is inspired from the skeleton architecture of Ac-
tiveClean. Even though being different in implementation, our
framework also consists of a Model Initializer, a Sampler, a
Cleaner and a Model Updater. The intuition of using newly
cleaned sample to update the model parameter through the
gradient update step has been borrowed in our implementation
as well.

Differences from ActiveClean : Though the basic pipeline
follows a similar structure to ActiveClean, a very major
component of the pipeline is to intelligently select samples of
data from Rdirty to clean in each iteration. Since, the initial
Rdirty assumes the entire dataset to be entirely dirty and our
model parameter update depends on cleaning strictly dirty data,
it is always better to ideally sample the ‘real’ dirty tuples
first and then leave the ‘real’ clean ones for later iterations.
This will not only help us in reaching convergence faster but
also not introduce any errors in the cleaning process due to
wrongful estimates. For this, we have designed a new module
called ‘Dirtiness Confidence Evaluator’ (refer Figure 2b)
which is based on a combination of domain-dependent and
domain-independent heuristic. However, this requires one pass
of pre-processing over the entire dataset Rdirty before starting
the cleaning process (for one of its modules).

Additionally, in all the primary examples described in Ac-
tiveClean, the Cleaner module talks about manually cleaning
the samples. We argue that even though manual cleaning will
be more accurate, we need to find a trade-off between effort
and accuracy. It is better to have a pre-defined set of rules
than a manual cleaner, such that if the coverage of the set of
rules is large, the effort required to clean each individual tuple
becomes automated. Further, as the size of dataset increases,
manual cleaning can become cumbersome. It is true that for
this to be fault-free, the coverage of rules needs to be large
and should incorporate information from within and outside
the data-domain, it is still a relatively feasible option. For the
extension described above, we build a few parts of our pre-
processing module on this fundamental rule.

Dirtiness Confidence Evaluator : This module tries to in-
corporate information from not only the Cleaner (as described
in existing work), but also uses information from the Model
itself. We introduce the notion of an entity being ‘Dirty’ here.

Further, we define a score metric called ‘Dirtiness Confidence’
which describes the relative confidence of knowing whether
an entity is dirty or not. Here, an entity is defined as either
a tuple or a specific data entry in a tuple. Our heuristic to
sample dirty data from the current Rdirty then boils down to
ranking dirtiness confidence value for each tuple in the current
state of Rdirty and choosing the top S entries (where S is the
batch size). Since, cleaning of each data tuple gives us some
information about an entity being dirty or not, the dirtiness
confidence value of any entity keeps getting updated based
on the current state of the system. This will ensure that only
entities with high dirtiness confidence values get sampled in
each turn of sampling.

Initially, at any given iteration, the probability of a tuple
getting sampled through the Sampler is provided a uniform
distribution in the total no. of tuples in the current state of
Rdirty. The evaluation of how ‘dirtiness factor’ will tweak the
porbability value of sampling for a given tuple can be broken
down into 3 steps:

1) Handling Duplicates (H) : Information Available from
a Related Entity: For any tuple in the current instantiation
of Rdirty, it might be the case that there exists atleast one
other tuple which follows the same error structure. This can be
defined in two ways: (i) The current tuple under inspection is
the same as the cleaned version of some tuple that was sampled
and cleaned in some previous iteration; or (ii) The current tuple
under inspection is the same as the dirty version of some tuple
that was sampled and cleaned in some previous iteration. If we
closely inspect both the cases, the ‘Dirty Confidence’ value of
the tuple as per case (i) should be low and as per case (ii)
should be high. But, ActiveClean cannot discover this hidden
relationship across tuples.

We use the ‘Cleaner’ module to track this information.
Whenever a sample is sent to the Cleaner module, 2 dictionar-
ies D1 (for clean tuples) and D2 (for initial dirty tuples) are
updated that contain the Hash-Value of each tuple, post and
after cleaning. The Hash-value in the current task has been
defined as a simple string concatenation function. If the tuple
was already clean, its hash-value only gets updated in D1.
Whereas for the dirty tuple case, its hash-value post cleaning
gets updated in D1 and the original hash-value of the original
dirty tuple in D2. Now these dictionaries can be used as a
look-up function in each subsequent iteration to be used in
choosing a better sample.

Using this information, if for any tuple in Rdirty belongs in
the D1 dictionary, its sampling probability is set to 0 (since it
is entirely clean). Alternatively, for the tuple present in D2, its
sampling probability is increased by a constant factor F. Due
to this re-ordering, the left-over mass is uniformly distributed
across all other tuples in Rdirty .

2) Handling Attribute-wise Dirty Entries (C): Information
Available from a Bound Attribute Value: Analyzing how data
cleaning rules are applied, we can infer a very strong structure
in how data entries get cleaned. In each cleaning process, a
tuple changes a few attribute entries and makes the whole tuple
clean. Hence, cleaning happens at the attribute value level. So,
if we know all possible domain values of each attribute in the
dataset, we can construct and update a dictionary to denote
the confidence value of each domain value per attribute. For

instance, suppose the attribute ‘country’ has only a few ‘legal’
domain values and a value of ‘USA’ gets cleaned to ’United
States’ every time it is seen, we know that the confidence
of ‘USA’ being dirty is quite high. This is based on the
frequency of a certain domain value getting cleaned v/s staying
intact, given the cleaning operation. We try to incorporate this
information in our heuristic.

For example, if we see 5 data tuples consecutively in which
‘USA’ gets cleaned to ‘United States’, then we know with
slightly high confidence that seeing ‘USA’ another time will
more likely by a part of a dirty tuple. Whereas, if we see
a tuple with attribute value ‘Turkey’ and it stays ‘Turkey’ in
consecutive dirty tuples after cleaning, the dirtiness confidence
of seeing ‘Trukey’ in a tuple which is dirty itself, solely due
to ‘Turkey’, is lesser in value. Hence, based on the cleaning
process for every tuple in the sample, we can adjust the
dirtiness confidence for the seen domain value in an attribute.

Now, to control the capacity of how high or low this
confidence value can go, we need to keep bounds. In this
model, we restrict the dirtiness confidence value between 0
and 10. Every domain value of domain is initialized with the
maximum dirtiness factor of 10 in the beginning. This factor
keeps switching based on each recent evidence that we find
for that value entry in the cleaning phase. Update of dirtiness
value for any given attribute value is slow but exponential in
nature. But it should be noted that for a certain attribute, the
extent of exponential increase in dirtiness confidence value
for an assumed dirty value getting cleaned is lesser than the
extent of exponential decrease in dirtiness confidence value for
an assumed dirty value to not get cleaned. This is based on
the logic that our calculation is more biased towards assuming
data to be dirty, hence it would be more productive in finding
an entry which could supposedly be clean for an attribute.

Since each update is highly affected by the new evidence
seen, over a period of some iterations, the true distribution of
dirtiness values for a given attribute will get approximated.
For example, if ‘United States’ never gets cleaned and stays
as ‘United States’, its dirtiness confidence will go down to 0
after a certain no. of fixed iterations. Similarly, if ‘USA’ gets
cleaned to ‘United States’ every time, its dirtiness confidence
will be at the highest level of 10 always. Further, the dirtiness
confidence of any missing value in an attribute is always set
to 10.

Now to use this information in the current sampling phase,
we can find the average dirtiness factor of a given tuple in
Rdirty. This can be computed by taking the average of the
dirtiness confidence of all constituent value entries in the tuple.
This can be used as a factor in weighing the probability
sampling across all sample contenders from Rdirty to be
described further.

3) Handling Dirtiness Across Cleaning Rules (CR): Infor-
mation Available from each Model Update Iteration: The last
component included in the proposed extension uses informa-
tion from both the Cleaner and the Model Update module.
This module tries to gather information and update the dirtiness
confidence for each tuple based on the set of cleaning rules that
can be applied to this tuple. This is the module which requires
some information about the relationship between a tuple and
a cleaning rule, which needs to be stored as a pre-processing

step even before starting the sample-update iteration. Since
the set of data cleaning rules is available before-hand, as a
pre-processing step, we can store a dictionary of each tuple
mapped to all kinds of cleaning rules that can be applied to
the tuple once it has been sampled. This information can be
gathered using the dirty data identification sub-step from the
Cleaner as a util function. It should be noted that there exists
a trade-off between efficiency and effort for this computation,
we are doing extra analysis of dirty data identification (but not
repair) at the cost of converging faster.

The logic behind keeping a mapping for each tuple in the
dataset with all possible set of rules that can be applied to
it, can be useful in strengthening the dirtiness confidence of a
tuple indirectly. To fully flesh it out, we can define a ‘Strength
Factor’ associated with each rule in the Cleaner rule set. This
Strength Factor describes how relevant is a rule in increasing
the effective accuracy in each subsequent step of the iterative
process.

For example, say in iteration 1, out of 20 dirty tuples
cleaned, 15 were cleaned due to application of some Rule
R’ and 5 were cleaned using some rule R” with an increase
in training accuracy from 84% to 86% . Further, in the next
iteration, out of some new 25 tuples cleaned, say 22 of them
were cleaned on applying Rule R” and 3 due to application
of Rule R’ with an increase in training accuracy from 86%
to 86.01%. Intuitively, we can see that if we sample more
tuples that get cleaned using Rule R’, we are likely to see a
better increase in accuracy than using samples that get cleaned
using rule R”. This helps us in assigning a relative ‘Strength
Factor’ to each rule based on its contribution in increasing
the extent of training accuracy increase upon model parameter
update. Hence, StrengthFactor(R’) = 86

84 .
15
20 + 86.01

86 . 325 and
StrengthFactor(R”) = 86

84 .
5
20 + 86.01

86 . 2225 . Now using the pre-
processed dictionary of tuple to rule-set mapping, we can
compute a factor that also gets included in defining the
dirtiness confidence of a tuple. For each tuple, this factor can
be the average of the Strength Factor of all the rules that will
be applied to this tuple if this tuple gets picked to be cleaned.
This factor can be appropriately combined with estimates from
the other 2 heuristic steps to compute a composite score.

Here, we use the information from the ML Updated model
to track the accuracy increase (which is our metric of defining
‘better’ as discussed previously) and information from the
cleaner on the type and count of data cleaning done in the
current iteration. Since the process of updating this strength
factor is incremental and iterative, over a course of iterations,
ideally, the Strength Factor of rules that affect the model
more in terms of increasing the training accuracy get picked
up fast and come to a saturation value giving way for other
rules in order based on relative increase in accuracy coming
from their end. Since, this is an ideal behavior in theory,
we might see a slightly disproportionate result in practice.
Nonetheless, incorporating this factor into account will surely
help in identifying and increasing the probability of selection
for certain dirty tuples in the sample that heavily use such
rules. This is because it adds a positive factor in the dirtiness
confidence evaluation - hence it will always be better even if
the Strength Factor update is disproportionate in nature.

For every new iteration of sampling, using information
from each of the heuristic steps (H) + (C) + (CR) updated at the

end of the previous iteration, we can normalize the weighted
scores received from each of the 3 steps and define an ordered
ranking for the tuples to be sampled. To validate the intuition
of this logic, we will analyse the efficiency of our proposed
heuristic in the Experimentation section.

Dirtiness Confidence for each tuple Ti in Rdirty (weighted
sum)

= α1[H]i + α2[C]i + α3[CR]i

Further, Effective Sampling Probability for Ti in Rdirty:

=
α1[H]i + α2[C]i + α3[CR]i∑
i α1[H]i + α2[C]i + α3[CR]i

Using a rank-ordering from this probability distribution,
we can sample dirty data effectively, based on all the evidence
aggregated in the iterative process. Sine the range of values for
each of the values received from Steps (H), (C) and (CR) have
a different range value, we need appropriate values of each α
to take a balanced proportion from each of the 3 heuristic
sub-steps. It would be better to experiment with this value and
choose a domain-independent evaluation for the same, but due
to time constraints we decided to move forward with a fixed
value of α′s based on approximate estimates.

The approach mentioned in Our Model is a novel extension
to the prior work of ‘ActiveClean’. In subsequent sections, we
will draw a comparison between experimental evaluation of (i)
Active Clean (Vanilla - No Optimizers), (ii) Active Clean with
Optimizers, and (iii) Our Model based on the results obtained
on training the UCI Adult Dataset as an ML-prediction task.
It should be noted that the implementation for each has been
coded by us from scratch.

IV. DATASET

We have worked on a dataset obtained from the UC-Irvine
database collection called UCI Adult dataset. This database
contains general information of adults including but not limited
to age, sex, work class and education. A label corresponding
to each individual denotes if they earn more than $50K a year
or not. The dataset is used as a classification machine learning
problem through which we predict if a particular person will
earn more than $50k a year or less than $50k a year. The
dataset is partially-dirty with multiple missing values. It is
highly skewed with majority of the labels being of people
earning less than $50k a year.

The database obtained from the website is divided into
two parts namely a training dataset and a testing dataset.
With training set having approximately 32k entries and test
set having approximately 16k entries. After the database is
obtained from the website, we combine the two sets and it
is randomly shuffled. This shuffled dataset is divided into a
training set of about 38k entries and a test set of 10k entries.
The dataset has approximately 3800 missing values (denoted
as ‘?’) which we will be editing to ‘-999’ and ‘-NA-’ for
numeral-based entities and string-based entities respectively.
This allows us to maintain a constant format of the data.

The dataset has 15 attributes with column names including
age, workclass, finalweight, education, occupation, race, sex,

capital-gain, capital-loss, hours-per-week, native-country etc.
Some of these columns contain discrete values while the rest
are continuous values (integers).

The discrete values for attributes have been defined by the
contributors as:

Workclass: Private, Self-emp-not-inc, Self-emp-inc,
Federal-gov, Local-gov, State-gov, Without-pay, Never-
worked.

Education: Bachelors, Some-college, 11th, HS-grad, Prof-
school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters,
1st-4th, 10th, Doctorate, 5th-6th, Preschool.

Marital-status: Married-civ-spouse, Divorced, Never-
married, Separated,Widowed, Married-spouseabsent, Married-
AF-spouse.

Occupation: Tech-support, Craft-repair, Other-service,
Sales, Exec-managerial, Prof-specialty, Handlerscleaners,
Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-
moving, Priv-house-serv, Protectiveserv, Armed-Forces.

Relationship: Wife, Own-child, Husband, Not-in-family,
Other-relative, Unmarried.

Race: White, Asian-Pac-Islander, Amer-Indian-Eskimo,
Other, Black. Sex: Female, Male.

Native-Country: United-States, Cambodia, England,
Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI
etc.), India, Japan, Greece, South, China, Cuba, Iran,
Honduras, Philippines, Italy, Poland, Jamaica, Vietnam,
Mexico, Portugal, Ireland, France, Dominican-Republic, Laos,
Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala,
Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador,
Trinadad & Tobago, Peru, Hong, Holand-Netherlands.

The final attribute which denotes the earnings of a person
is valued as ≤$50k and >$50k respectively. We will edit this
particular attribute so that it is represented as -1 and 1, which
correspond to class labels in our prediction task. This mapping
will help us in the further steps to simplify calculations. In
certain attributes we have added more domain values that can
be assigned to that attribute. Occupation has an option called
none. Also, we append another column to the database which
provides serial numbers - to be treated as the Primary Key for
this database. This will be helpful when we create a list of
tuples which contain missing data so that they can be mapped
to their position in the original database.

V. DATA CLEANING: TECHNOLOGY AND APPROACHES
USED

Any real dataset is bound to have various errors and
wrong data entries. Manually detecting these errors in large
datasets is a very tedious job and is highly time consuming.
This error We detect these errors using Conditional Function
Dependencies (CFDs), Integrity Constrains (ICs) and Natural
Language Processing(NLP) rules.

A. Integrity Constraints:

This method detects errors which violate the characteristic
range of a particular attribute. For example, if we consider

the current dataset, it has attributes such as age and hours-
per-week. These represent the age a person and the number
of hours per week that he works. Hence, neither of these can
be negative. If an entry is negative, upon detection its sign
will get reversed [refer reason in section VI]. Also we are
checking for an upper limit for these two attributes i.e. the
age of a person has to be < 200 and that the hours-per-week
has to be <= 168 (One cannot work for more hours than the
number of hours in a week). If we do find such an entry, we
assume that as an error, value of 200 has been added to the
age and we subtract 200 from the entry [refer reason in section
VI]. A similar constraint has been added for Education level
where the value cannot be negative.

B. Conditional Functional Dependencies:

Many of the attributes in the data set are related to each
other and are interdependent. Thus using CFDs we can find
if an entry is breaching this relation. For example, there are
certain entries which mention the work class to be never
worked. If that is the case, then the hours-per-week cannot be
anything but 0. An actual tuple in the database can be listed as:

Never-worked, 157131, 11th, 7, Never-married, ?, Own-
child, White, Female, 0, 0, 10, United-States, <= $50K

Above is an entry from the database which classifies
the person in the never worked category while it shows
that she works for 10 hours per week, which is clearly not
possible. Thus, there are multiple such fundamental conditions
which can be identified and used for data cleaning. Such
instantiations include:

If workclass == ‘never worked’
occupation=‘none’ and hours per week = ‘0’

If workclass ==‘never worked’
class=‘-1’

If workclass ==‘without pay’
class=‘-1’

If workclass==‘private’
occupation!=‘armed forces’

If workclass==‘self emp not inc’
occupation!=‘armed forces’

If workclass==‘self emp inc’
occupation!=‘armed forces’

The following CFDs ensure that if a person is married, in
his/her relationship column we need to make sure the entry is
of a husband/wife.

If married==‘married civ spouse’
relationship=‘wife’ or ‘husband’(depending on gender)

If married==‘married absent spouse’
relationship=‘wife’ or ‘husband’(depending on gender)

If married==‘married af spouse’
relationship=‘wife’ or ‘husband’(depending on gender)

If a person has been widowed, never married or separated,
his/her relationship cannot contain husband/wife.

If married==‘widowed’
relationship!=‘wife’ or ‘husband’

If married==‘never married’
relationship!=‘wife’ or ‘husband’

If married==‘separated’
relationship!=‘wife’ or ‘husband’

A member with occupation as armed force cannot be
anything but federal government.
If occupation==‘armed forces’

workclass=‘federal gov’
If occupation==‘priv house serv’

workclass=‘private’

If relationship==‘wife’ and gender==‘male’ and if marital
status != ‘widowed’ or ‘never married’ or ‘separated’

gender=‘female’
If relationship==‘husband’ and gender==‘female’ and if
marital status != ‘widowed’ or ‘never married’ or ‘separated’

gender=‘male’

Education for every entry should match its education-num
according to the mapping as given below: Preschool - 1; 1st
to 4th - 2; 5th 6th - 3; bachelors - 13; masters - 14; prof
school - 15; doctorate - 16

Every rule has been given a unique id, which gets saved
if this rule is used in cleaning, so that we can use it at a later
stage to calculate α3.(as mentioned in section III)

C. Natural Language Processing:

We have used Bayes’ Theorem to choose the most likely
spelling correction for any given word. We try to find the
correction c out of all possible corrections that maximizes the
probability that c is the intended correction given the original
word w:

argmaxc∈candidatesP (c|w)

By Bayes’ Theorem, this is equivalent to:

argmaxc∈candidatesP (c)P (w|c)/P (w)

Since, P (w) is same for every possible c:

argmaxc∈candidatesP (c)P (w|c)

We have created a simple candidate model to find all the
possible corrections. A simple edit to a word is a deletion
(remove one letter), a transposition (swap two adjacent letters),
a replacement (change one letter to another) or an insertion
(add a letter). Our model considers one and two simple edits
because these are the most likely mistakes that could happen.
P (c) is the language model which tells the probability with
which a particular word (c) appears in the database. This
probability can be estimated by counting the number of times
each word appears. P (w|c) is the probability that w would be
typed in a text when the author meant c. We have defined a
trivial model that says all known words of edit distance 1 are
infinitely more probable than known words of edit distance 2,
and infinitely less probable than a known word of edit distance
0.

We are also handling abbreviations using simple natural
language processing techniques- substring matching, similarity
testing and pattern recognition.

VI. EXPERIMENTS AND ANALYSIS

To simulate the desired behaviour and validate the ex-
plained solution in this paper, we started by taking an existing
dataset namely UCI Adult as described in Section IV and
followed by writing the code from scratch in python. This
dataset is already dirty in its raw format - with the presence of
missing values (refer Section IV) and violation of some factual
CFD’s (refer Section V). Keeping this in mind, we take the
following approach in building a complete sample of train and
test data for our ML prediction task.

• Combine the entire provided train+test UCI Adult dataset,
say D [size=48,842].

• Randomly shuffle D and then extract 10,000 entries which
do not have any missing value for either of the attributes.

• Apply CFD’s to these 10,000 entries so that we can assert
an almost “manual” level of correctness for them and keep
them aside as the un-seen, clean Test Data (Te). If we
assume that the CFD’s which we are using cover the entire
set of all possible evaluations of linked attribute values for
this database, we can actually assert perfect correctness
of data. But given in our case, we have started with a
smaller set of CFD’s to validate our approach, we can
still assume near “correctness” for our current application
over the formulated CFD’s.

• For the remainder of the data in D [size=38,842], keep it
aside and mark it as Train Data (Tr).

• Even though the original dataset has real errors, to be
able to correctly test and validate the functionality of
our proposed model we intentionally add various types
of errors in the Train data set and see it getting cleaned
as the entire mechanism proceeds in iterations.

Apart from ∼3.8k number of tuples containing missing
data in one or more attribute fields in Tr, we go ahead
and artificially insert the following errors as per the defined
quantity:

• Randomly delete attributes and replace them with ei-
ther ’-999-’ or ’-NA-’ depending on if the attribute is
string-based or integer-based for Max of 5% of the
dataset.[size=194]

• Max of 10% of the total records for which the ‘age’
attribute value is not missing, are modified to either negate
the age value or add 200 to it, randomly. [size=3,884]

• Max of 10% of the total records for which the ‘total no. of
hours worked’ attribute value is not missing,are modified
to either negate the total hours value or add 200 to it,
randomly. [size=3,884]

• 3000 records out of all the records for which the ‘Country’
attribute value is not missing, are modified to be abbre-
viations if the original country label belongs in the set
United States, India, Holand-Netherlands.

• Randomly change the race for Max of 20% of the tuples.
[size=7,768]

• Randomly edit the ‘education num’ for Max of 20% of
entries by giving them random values between -16 to
16 irrespective of the actually education level reached.
[size=7,030]

• Max of 25% of the total records have their ’gender’
changed to either male or female depending of their rela-
tionship status being either wife or husband respectively.

[size=3,351]
• Randomly change the work-class of Max of 20% of total

records from federal gov to local gov, state gov etc.
• Max of 20% of the total records of which the ones with

the marital status as married, we change the relationship
status by randomly selecting it from a list containing own
child, not in family and unmarried. [size=3,322]

• Max of 15% of the total records of which the tuples
having marital status as widowed, never married and
separated we change the relationship to either wife or
husband randomly. [size=2,170]

Many of these insertions may have happened in the same tuple.
The final count of dirty entries is almost 27k out of the total
38k entries.

Since, Tr has been made sufficiently dirty, we can now
move along with the actual experimentation to try out the
implemented solution mechanism. As mentioned in section III,
the initial Tr is trained on a Logistic regression classifier to
get the initial ML model weights and bias parameters. Missing
data values for this case are imputed before the model training
begins.

Having attained the original parameter values, we can start
our iterative process of cleaning, model parameter update and
further sampling of dirty data based on ML-model feedback, as
described below: (i) Initialise R = Tr, Rclean = {} and Rdirty
= Tr. (ii) Now, start an iterative loop to facilitate batch data-
cleaning and update until all samples have been chosen and
looked at once.

• Based on the dirtiness confidence of tuples (as mentioned
in section III), choose a batch size of dirty data sample
to clean in each iteration, say = 500.

• Apply data cleaning techniques in a loop of data-
correction for present values and data imputation for
missing values on the given sample [using k-nearest
neighbour approach], until any further change occurs.
This step includes application of Integrity Constraints,
Conditional Functional Dependencies (CFDs), NLP-based
rules for correcting abbreviations, spelling corrections
and other string-based patterns -which is defined in the
Section V.

• After cleaning the current sample, the next step includes
update of model parameters (θt) using a gradient-based
approach found by combining of information from the
cleaned sample, set of already clean data entries and the
remaining dirty data component. This can be found in
Section III as evaluations for gs; gc and the formula for
model parameter update. The value of γ has been chosen
to be 0.001 initially which decays over time.

• The confidence factor of each tuple being dirty gets
updated depending on the fact if in the current iteration
it was cleaned or no. If it was cleaned the confidence
increases while if it wasn’t then the confidence reduces.
This confidence factor(CF) is composed of three com-
ponents [refer section III]. To enlist them: i) Hashing
factor(H): Handles duplicacy of dirty tuples ii) Average
dirtiness confidence(C) of the tuple which was cleaned
based on the individual confidence of its attribute values
iii) Factor of contribution of data cleaning rules in clean-
ing that particular sample(CR).

• To calculate the final confidence of each tuple we take the
weighted contribution of the three components mentioned
above, giving us the confidence as:

CF = α1 ∗H + α2 ∗ C + α3 ∗ CR

The value of H is of the order of 1
38000 , while C lies

between 0 and 10 and CR is a slowly increasing function.
Thus we select the alphas such that none of the component
is overshadowed by the others. Keeping this in mind we
select values giving us α1 = 0.5 ,α2 = 0.0025 and α3 =
0.04.

• Using the sample from above, each of R,Rclean and Rdirty
is updated as :

Rdirty = Rdirty − cleaned sample

Rclean = Rclean + cleaned sample

R = Rdirty +Rclean

And the next iteration continues.

ActiveClean [1] also proposes the idea of using a machine
learning based estimator which would use ML models to pre-
dict the dirty data entries and pick only them to be put through
the cleaner. We implemented this version of ActiveClean using
Logistic Regression classifier as the estimator after analyzing
its working as laid out in the paper. We used this model on the
same data set and though the number of iterations did decrease
and the model converged quicker than our final model, this
method has a major drawback of “false positives”. This method
assumes that the prediction made by its model is absolutely
correct and if it labels a tuple is clean, it is directly transferred
to Rclean without any checks. This ML model is trained on the
first sample(sample size = 500) after it has been cleaned using
data cleaning rules, which is a very small size of a training
data set. Thus if using this model, it predicts previously unseen
dirty tuples as clean, it will never be able to identify similar
instances in the future iterations also. Though it does improve
to an extent with every iteration, at least in the initial stages
it has not been trained so well, all the entries labelled as
”clean” need not be actually clean. After we ran our code
for this model, we noticed that out of about 27k dirty tuples,
it could identify only 12k tuples, thus there were over 14k
false positives. Since the data set we used is highly skewed
as mention in Section IV, the labels ended up being correctly
predicted which would not be the case if the data set was more
evenly balanced, wherein our model would have performed
better. Figure 3 shows the comparison of the number of dirty
data sampled with increase in iteration for vanilla ActiveClean,
ActiveClean with ML estimator and Our model. As we can see
that our model first samples only the dirty data while in other
two cases dirty data size is around ∼ 350 (out of 500 sample
size). So, our model converges faster than ActiveClean and is
more accurate than ActiveCean with ML estimator (because
of the false positives).

Table I shows the comparison of our model with vanilla
ActiveCean [1], ActiveClean with ML estimator (extension)
and two baselines described below.

• Baseline1 → Obtained by running our model only on
the clean part of Rdirty i.e. around 11k entries.

Fig. 3: Comparison of Dirty Data Sampled per iteration between ActiveClean, Our Model and ActiveClean with ML estimator.

TABLE I: Comparison of different models on accuracy

Model Train Accuracy Test Accuracy
ActiveClean 82.53 % 58.11 %

Baseline1 85.93 % 58.95 %
Baseline2 84.03 % 51.45 %

ActiveClean with 82.63 % 57.95 %
ML estimator
Our Model 82.64 % 57.94 %

• Baseline2 → Obtained by running our model on Rdirty
and only the cleaned part obtained as Rclean on running
the algorithm of our model, which is added to the original
Rdirty as a whole.

Fig. 4: Variation of training accuracy with iteration. The
increase shows that our stochastic gradient update is working
properly.

As can be seen in Figure 4, over the increase in iteration
count, even though the increase in accuracy for the current case

isnt much (maybe due to dirty data either not being sufficient
in quantity to produce any major change or the data is too well-
separated) or even too slow, we can still see some progress.
This even though does not give us very good results but helps
us in still validating our claim of performance increase.

VII. CONCLUSION

As discussed in this paper, ActiveClean is a strong step
towards research being done at the intersection of Machine
Learning and Database Technology. Even though the work is
specifically presented for Machine Learning models with con-
vex loss function, research work in this area is growing rapidly.
With the initial aim to combat Simpson’s paradox, ActiveClean
excels in providing a theoretical standpoint in establishing why
iterative cleaning and only parameter update is more relevant
for such models than entire re-training or data sampling. We
were able to validate the claims made by this existing work.
Not only did we implement and validate the optimisations
provided by the authors of ActiveClean on top of the basic
framework, but were also successful in validating and formu-
lating our own extension to their proposed model pipeline. Our
proposed extension finds a balance between domain-dependent
and domain-independent information in sampling intelligently
by keeping track of a score to define ‘Dirty confidence’ for
a data entity (tuple or value attribute). The results of the
experimentation show promising performance for our model.
Given the (skewed) nature of the dataset chosen, even though
the results were comparable to the baseline methods and the
variations of the actual ActiveClean implementation, our model
showed its strength in sampling all dirty samples before any
clean data tuple from the initial dirty dataset. Nonetheless,

there is abundant scope in refining our own implementation
or even come up with other optimisations that can make the
framework more flexible yet correct.

VIII. FUTURE WORK

Since the experimentation we tried to focus our evaluation
on was skewed in terms of label proportion, we could not see
much expected difference in the evaluation of results. It would
be interesting to carry forward our approach and try it on a
complete un-touched real-world dataset with proper balance of
class distribution. Further, our model extensions rely heavily
on using space to store information associated with Dirtiness
Confidence Evaluation. Even though the size of this data will
mostly be small given a specific problem dataset instance and
number of cleaner rules, it would be interesting to figure out
various compression or data encoding techniques to further
reduce space complexity. Lastly, certain parameter values (like
α’s for dirty data confidence weighing, batch size for sampling
etc.) in the experiments section have been defined by default by
us based on general intuitive evaluation. It would be beneficial
if we can come up with a framework that chooses for optimal
values of these parameters.

ACKNOWLEDGMENT

We would like to thank our course Professor Alexandra
Meliou, our course TA Keen Sung and all our classmates for
constant feedback on our project deliverables, pushing us to
improve our work and explore various novel ideas.

REFERENCES

[1] S. Krishnan et al, ActiveClean: Interactive data cleaning for statistical
modeling. PLVDB 9 (2016), no. 12, 948-959.

[2] Erhard Rahm and Hong Hai Do, Data Cleaning : Problems and Current
Approaches, IEEE Data Eng. Bull., 2000.

[3] H. H. Shahri, A Machine Learning Approach to Data Cleaning in
Databases and Data Warehouses, Progressive Methods in Data Ware-
housing and Business Intelligence: Concepts and Competitive Analytics,
vol. 3 2009.

[4] Jiannan Wang, Sanjay Krishnan, et al, A Sample-and-Clean Framework
for Fast and Accurate Query Processing on Dirty Data, SIGMOD, 2014.

[5] M. Yakout, L. Berti-Equille, and A. K. Elmagarmid, Dont be scared:
use scalable automatic repairing with maximal likelihood and bounded
changes, SIGMOD, 2013.

[6] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From data mining to
knowledge discovery in databases, AI magazine, 17(3):37, 1996.

[7] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, Enterprise data
analysis and visualization: An interview study, TVCG, 2012.

[8] S. Krishnan, D. Haas, M. J. Franklin, and E. Wu, Towards reliable
interactive data cleaning: A user survey and recommendations, HILDA,
2016.

[9] E. H. Simpson, The interpretation of interaction in contingency tables,
Journal of the Royal Statistical Society. Series B (Methodological).
JSTOR, 1951.

[10] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra, Progressive approach
to relational entity resolution, VLDB, 2014.

[11] T. Papenbrock, A. Heise, and F. Naumann, Progressive duplicate
detection, TKDE, 2015.

[12] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas,
Guided data repair, VLDB, 2011.

[13] L. Bottou. Stochastic gradient descent tricks. In Neural Networks:
Tricks of the Trade. 2012.

[14] A. Heise, G. Kasneci, and F. Naumann, Estimating the number and
sizes of fuzzy-duplicate clusters, CIKM, 2014.

[15] M. Bergman, T. Milo, S. Novgorodov, and W. C. Tan, Query-oriented
data cleaning with oracles, SIGMOD, 2015

[16] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik,
and X. Zhu. Corleone: Hands-off crowdsourcing for entity matching,
SIGMOD, 2014.

[17] B. Mozafari, P. Sarkar, M. J. Franklin, M. I. Jordan, and S. Madden,
Scaling up crowd-sourcing to very large datasets: A case for active
learning, VLDB, 2014.

